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Abstract
We review ‘particle-partitioning entanglement’ for itinerant many-particle
systems. This is defined as the entanglement between two subsets of particles
making up the system. We identify generic features and mechanisms of
particle entanglement that are valid over whole classes of itinerant quantum
systems. We formulate the general structure of particle entanglement in
many-fermion ground states, analogous to the ‘area law’ for the more usually
studied entanglement between spatial regions. The basic properties of particle
entanglement are first elucidated by considering relatively simple itinerant
models. We then review particle-partitioning entanglement in quantum states
with more intricate physics, such as anyonic models and quantum Hall states.

PACS numbers: 03.67.Mn, 03.75.Gg, 64.70.Tg, 71.10.−w

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Bipartite entanglement in many-particle systems, i.e. the entanglement between one part (A) of
a system and the rest (B), has grown into a widely studied topic in the last few years. Usually,
the partitioning is spatial, so that A is a collection of lattice sites or is a connected region
of space. In this article, we will consider an alternate form of partitioning, namely particle
partitioning. With the wavefunction expressed in first-quantized form, one can meaningfully
partition particles rather than space, and calculate entanglements between subsets of particles.
Since each particle has a label in first-quantized wavefunctions, indistinguishability does not
preclude well-defined subsets of particles. Note that, with such partitioning, A or B does not
correspond to connected regions of space. Also note that particle partitioning is only defined
in itinerant systems where the particles hop, and thus has no meaning for pure spin models.
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Particle-partitioning entanglement is generally quite different from the entanglement
between spatial partitions of the same system, and also provides a distinct set of physical
insights compared to the more standard spatial partitioning entanglement calculations. Particle
entanglement provides a novel and unique perspective on the structure of itinerant many-
particle wavefunctions.

Given a partitioning, the entanglement can be quantified using various measures. The
basic quantity is the reduced density matrix of the A partition, ρA = trB ρ, obtained by tracing
out B degrees of freedom. We assume the system to be in a pure state, described by density
matrix ρ = |ψ〉〈ψ |. Various entanglement quantifiers can then be extracted from ρA. We will
mostly confine ourselves to the entanglement entropy SA, defined as SA = −tr[ρA ln ρA]. We
will also restrict ourselves to zero temperatures, i.e. to entanglement in the ground state of
itinerant systems.

Brief history. Several pieces of work explored simple versions of particle-partitioning
entanglement between identical quantum particles, even before the concept was carefully
distinguished from spatial entanglement [1–7]. The relationship between quantum
indistinguishability and entanglement was studied for two fermions in [1] and for two bosons
in [2]. Particle entanglement was studied in [4, 6] in somewhat more complicated systems.

A careful distinction with spatial entanglement, and a comparison between the two types
of partitioning, appears in [8, 9], in the context of fractional quantum Hall (FQH) states.
Particle partitioning is tempting in entanglement considerations for FQH states because FQH
model wavefunctions (e.g. Laughlin states) are often written in first-quantized form where the
particles have explicit labels. Thus, particle-partitioning entanglement in FQH states has also
been computed in [4, 7].

In [8, 9] and in work reported since then [10–12], particle entanglement has been shown
to be a promising novel measure of correlations. In fractional quantum Hall states this
type of entanglement reveals the exclusion statistics inherent in excitations of such states
[8, 9]. Similar insight arises from particle entanglement calculations in the Calogero–
Sutherland model [11]. For one-dimensional anyon states, particle-partitioning entanglement
is found to be sensitive to the anyon statistics parameter [12, 13].

This review. Clearly, entanglement between particles in itinerant systems is a promising
new concept, potentially useful for describing subtle correlations and the interplay between
statistics and interaction effects. A broad study of the concept and its utility is obviously
necessary. In this review, we will survey the results that are available until now. We will focus
in particular on common features and on results of wide generality, that provide insights into
classes of quantum itinerant systems.

The present review is solely concerned with particle-partitioning entanglement in itinerant
many-particle systems. We will therefore not discuss entanglement between spatial partitions,
or any other kind of entanglement. Reviews of other types of entanglement can be found, e.g.
in [14, 15]. The other reviews of this special issue provide more recent and more condensed-
matter-oriented perspectives on entanglement in many-particle states.

The target audience for this review is condensed matter physicists interested in various
possible kinds of entanglement in many-particle wavefunctions. As such, other than using the
definition of the entanglement entropy SA, we do not treat or use any quantum information
theory topics. A recent review of quantum entanglement was provided in [16] from that
perspective. It is of course not possible to make a review of the present type completely self-
contained since we cannot introduce in detail each of the several models and states considered
here. We therefore assume familiarity with several classes of many-particle states or models.
Only minimal motivational background is provided for each model. The topic here is particle-
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partitioning entanglement and not the individual models. We expect that the typical theorist
practicing condensed matter will indeed be familiar with most of the many-particle models
and states employed.

We start in section 2 by working out in detail an elementary example of particle
partitioning, contrasted to spatial partitioning of the same quantum state. The fact that
entanglement depends crucially on the type of partitioning is perhaps not as widely appreciated
as it should be; we hope that a detailed example helps clarify the concept of particle partitioning.
In section 3 we present some generic results and intuitions, before moving on to specific
systems in the following sections.

Sections 4–6 consider respectively bosons, fermions and anyons, and review numerical
and analytical results in order to provide an overview of various mechanisms for particle-
partitioning entanglement. We then turn to more unusual many-particle states: section 7
reviews results for fractional quantum Hall states and section 8 for the Calogero–Sutherland
models.

2. An elementary example

The concept of particle partitioning causes enough confusion to justify using a very simple
example to illustrate in detail the definition and its difference from spatial partitioning. Readers
comfortable with the concept may safely skip this section.

We imagine two (spinless) fermions in three sites (or orbitals), which we label α, β, γ .
We will use the wavefunction

|ψ〉 = (
a1c

†
αc

†
β + a2c

†
βc†γ

)|vacuum〉 = a1|110〉 + a2|011〉.
For usual spatial partitioning, we can consider for example partition A to consist of site α

only. Then the reduced basis for A consists of the α microstates |0〉 and |1〉 = c†α|0〉, and the

reduced density matrix in this basis is ρA = (|a2|2 0
0 |a1|2

)
.

One could also take A to contain sites α and β. Then the reduced basis for A contains
four states, |00〉, |01〉 = c

†
β |0〉, |10〉 = c†α|0〉 and |11〉 = c†αc

†
β |0〉, and in this basis

ρA =

⎛
⎜⎜⎝

0 0 0 0
0 |a2|2 0 0
0 0 0 0
0 0 0 |a1|2

⎞
⎟⎟⎠ .

We next turn to particle partitioning, for which the wavefunction must be expressed in
first-quantized form with explicit anti-symmetrization:

|ψ〉 = a1[φα(1)φβ(2) − φα(2)φβ(1)]/
√

2 + a2[φβ(1)φγ (2) − φβ(2)φγ (1)]/
√

2.

The particles (fermions) now have labels, so that we can consider the entanglement between
particle 1 and particle 2. (Partition A contains particle 1.) Since particle 1 can be in any one
of the three sites, the reduced basis for A can be labeled by the site labels, |α〉, |β〉, |γ 〉. The
reduced density matrix is

ρA =
⎛
⎝|a1|2/2 0 −a1a

∗
2

0 1/2 0
−a∗

1a2 0 |a2|2/2

⎞
⎠ .

From this simple example we already see that particle-partitioning entanglement is utterly
different from spatial or site partitioning entanglement. A second lesson that emerges from
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this example is that particle-partitioning entanglement is affected substantially by the (anti-)
symmetrization which is explicit in first quantization. It is therefore no surprise that this type
of entanglement is especially sensitive to quantum statistics.

3. General considerations

Before analyzing specific systems, we present some facts and conjectures broadly applicable
to a variety of itinerant quantum many-particle states.

3.1. Bounds

A generic itinerant lattice system has N particles in L sites; we consider bosons or spinless
fermions with N � L. In every case, a natural upper bound for Sn is provided by the (logarithm
of the) size of the reduced density matrix ρA = ρn, i.e. the dimensions of the reduced Hilbert
space of the A partition. This size is

(
L

n

) = C(L, n) for fermions and C(L − 1 + n, n) for
bosons. The actual rank of ρn can be much smaller due to physical reasons, so that the
entanglement entropies are usually significantly smaller than the upper bounds, as we shall
see in the examples we treat.

In a bosonic system, Sn can vanish since a Bose condensate wavefunction is simply a
product state of individual boson wavefunctions, each identical. For fermions, however, anti-
symmetrization requires the superposition of product states; for free fermions described by
a Slater determinant wavefunction, this causes ρn to have C(N, n) equal eigenvalues. This
provides a nonzero lower bound for Sn in a fermionic system. To summarize,

Bosons : 0 � Sn � ln

(
L − 1 + n

n

)
, (1)

Fermions : ln

(
N

n

)
� Sn � ln

(
L

n

)
. (2)

3.2. Standard form for fermions

For large fermion number, N � 1, we propose the following widely applicable form for the
entanglement of n � N fermions with the rest:

Sn(N) = ln C(N, n) + αn + O(1/Nγ ) (3)

= n ln N + α′
n + O(1/Nγ ), (4)

with γ > 0. This form is suggested by results reported in [8–12]. For example, αn = n ln m

for the Laughlin state at filling ν = 1/m [8]. The same standard behavior seems to hold
for bosonic systems which lack macroscopic condensation into a single mode, e.g. bosonic
Laughlin states [9], or hard-core repulsive bosons in one dimension [21]. Note that, for lattice
sizes larger than N, the generic behavior (3) indicates that the entanglement entropy does not
saturate the upper bound (1) or (2) obtained from the size of the reduced Hilbert space.

Subtle correlation and statistics effects can be contained in the behavior of the O(1) term
αn, and sometimes also the O(1/Nγ ) term. To get some intuition about how such effects
show up in αn, we summarize the behavior of αn for several kinds of states. For free fermions,
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ln C(L,n)

ln C(N,n) ln C(N,n)

ln C(Nφ+1, n)

Figure 1. Lower and upper bounds for particle-partitioning entanglement in fermionic systems.
Left: usual situation such as mobile fermions in a non-frustrated lattice. Right: fermions in a flat
band or within a Landau level, with macroscopic degeneracy. Dashed arrows show the effect of
turning on interactions.

for charge-ordered states of the spinless-fermion model (subsection 5.1, also [10]) and for
Laughlin states (section 7 and [8, 9]), we have

αn(FF) = 0, αn(CDW) = ln 2, αn(Laughlin) = n ln m.

We note that states which are intuitively ‘more nontrivially correlated’ have stronger n-
dependence in αn. This strongly suggests that the αn function is a measure of correlations
in itinerant fermionic states. It is natural to conjecture that the linear-in-n behavior of αn

is symptomatic of intricately correlated states like quantum Hall states, and that in generic
itinerant states αn will have sub-linear dependences on n.

3.3. Exceptional case of macroscopic degeneracy

One has to treat with care the cases where the single-particle spectrum has a highly degenerate
ground state with degeneracy larger than N. The case of fractional quantum Hall (FQH) states
is one example that we will treat in detail in section 7. For FQH states, the appropriate Landau
level is immensely degenerate and only partially filled. Another example is a macroscopically
degenerate ‘flat band’ that is partially filled. Flat bands appear in the band structure of
frustrated lattices (kagome, checkerboard, pyrochlore, etc), where one of the energy bands can
be dispersion-free and have the same energy for all momentum; hence the name ‘flat’. (See,
e.g. [17] for a discussion of itinerant systems in flat-band situations due to lattice frustration.)

Denoting the degeneracy by Nφ + 1 (FQH notation), we have the upper bounds

Sn � ln

(
Nφ + 1

n

)
, Sn � ln

(
(Nφ + 1) + n − 1

n

)
,

respectively, for fermions and bosons, from Hilbert-space counting alone. This is very similar
to the case of N particles in L sites, above. (The lower bounds are the same as before.) The
difference is that for non-interacting particles in a flat band, Sn can be equal to the upper
bound, whereas in the usual case it is equal to the lower bound. In this case of macroscopic
degeneracy, interactions reduce the particle entanglement from the upper bound, as opposed
to the conventional situation where interactions raise the particle entanglement from the lower
bound. This is illustrated schematically in figure 1.
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3.4. Generic mechanisms: Slater terms, fragmentation or absence of condensation and
massive degeneracies

We summarize here the mechanisms through which an itinerant many-particle system can
possess particle-partitioning entanglement. This provides intuition concerning what physical
information is contained in the entanglement between particle partitions.

An ideal bosonic system is fully condensed in a single mode, and therefore has Sn = 0.
Thus, for bosonic systems, particle entanglement is a measure of the deviation from Bose
condensation. Interactions provide a simple mechanism for this—since an interacting Bose
system is only partially condensed, it possesses nonzero particle entanglement. Another
mechanism is low dimensionality; hard-core repulsive bosons living on a line (1D continuum;
Lieb–Liniger model) do not condense. In addition, condensate fragmentation provides a
second mechanism for nonzero Sn. Fragmentation is not as exotic a phenomenon as commonly
perceived; in fact it provides a unifying perspective to describe Mott phases of bosons in lattice
geometries [18]. Finally, one can also have Sn 	= 0 through quantum-mechanical superposition
of condensates in different modes, i.e. Schrödinger cat states. In section 4, we will illustrate
these situations through several examples.

For fermionic systems, fermionic statistics already provides a contribution ln C(N, n)

to the particle-entanglement entropy—this is the value of Sn when the system wavefunction
is a single Slater determinant. The excess particle entanglement over this amount tells us
how far one has to go beyond a single Slater determinant in order to describe the physics of
the system. In other words, the excess particle entanglement reflects loosely the number of
Slater determinant terms of similar amplitudes that need to be combined to produce the system
wavefunction.

The cases of macroscopic degeneracies require additional considerations. Particle
entanglement can be large here due to the much larger Hilbert space available without paying
an energy cost, so that ground state wavefunctions can involve much more than a single Slater
determinant (fermions) or a few condensate modes (bosons).

3.5. Relationship with correlation functions

The purpose of this subsection is to clarify the relationship between particle-partitioning
entanglement and more traditional condensed-matter quantities, namely correlation functions.

In the easiest case, n = 1, the one-particle entanglement entropy S1 can be obtained from
the one-particle correlation functions or the single-particle state occupancies. For example, for
one-dimensional translationally invariant systems, S1 can be expressed through momentum
occupation numbers. The momentum occupation numbers are Fourier transforms of the
reduced density matrix: c(k) = L−1

∫ L

0 dx ρ1(x) cos(2πkx/L), with L being the size of the
system. Then

S1 = −
∑

k

c(k) ln c(k).

More generally, for n > 1 it is intuitively clear that the elements of the reduced density
matrices are proportional to correlation functions. We write down the precise relationship for
a 1D continuum case:

ρn(
xn, 
yn) = (N − n)!

N !
〈
|φ†(x1) · · · φ†(xn)φ(yn) · · · φ(y1)|
〉.

6
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where the ‘vectors’ 
xn, 
yn encode coordinates of n particles, and

ρn(
xn, 
yn) =
∫

dzn+1 · · · dzN
∗(x1, . . . , xn, zn+1, . . . , zN)
(y1, . . . , yn, zn+1, . . . , zN).

The modification to lattice cases or higher dimensions is obvious.

4. Bosonic systems: role of condensation

In this section we illustrate the interplay between particle-partitioning entanglement and Bose
condensation, through several example models. First, considering a two-site Bose–Hubbard
model, we demonstrate nonzero particle-partitioning entanglement through condensate
fragmentation and the formation of Schrödinger cat states. Next, consideration of a lattice
boson model and the continuum Lieb–Liniger model reveals bosonic particle entanglement
due to partial condensation and absence of condensation, respectively.

4.1. Toy model: two-site Bose–Hubbard

Following [10], we consider N bosons on a two-site ‘lattice’, subject to a Bose–Hubbard model
Hamiltonian. The Hamiltonian is

Ĥ = −(
b̂
†
1b̂2 + b̂

†
2b̂1

)
+ 1

2U
(
b̂
†
1b̂

†
1b̂1b̂1 + b̂

†
2b̂

†
2b̂2b̂2

)
. (5)

We label the N-boson basis states by site occupancies, i.e. as |N1, N2〉 = |N1, N − N1〉.
For U = 0, the system is a non-interacting Bose condensate, with each boson packed into

the single-particle state 1√
2
(|1〉 + |2〉). In the U → +∞ case, the system is a Mott insulator,

with half the particles in site 1 and the other half in site 2, |N/2, N/2〉. Such a state is simple in
the ‘site’ basis (second-quantized wavefunction), but involves symmetrization in the ‘particle’
basis (first-quantized wavefunction), leading to nonzero particle-entanglement entropy.

Finally, the U → −∞ limit involves all particles in either site 1 or site 2. The ground
state is a linear combination of these two possibilities, 1√

2
(|0, N〉 + |N, 0〉), which for large

N is a macroscopic ‘Schrödinger cat’ state. Such a state is somewhat artificial because an
infinitesimal energy imbalance between the two states will ‘collapse’ this state. For example, a
‘symmetry-breaking’ term of the form εb̂

†
1b̂1, added to the Hamiltonian (5), would favor site 2

and destroy the cat state. The resulting state is a product state with zero particle entanglement.
For the simplest case of two bosons, there is only one way of partitioning (n = 1), so

the only Sn is S1. We expect S1 = 0 at U = 0, and maximal entanglement S1 = ln 2 for
both ‘Mott’ state at U = +∞ and the ‘Schrödinger cat’ state at U = −∞. The Hilbert space
is small; one can diagonalize the problem and calculate S1 analytically as a function of U.
One finds S1(U) = S1(−U), interpolating smoothly between zero and ln 2  0.6931 in both
positive and negative directions (figure 2(a)).

Figure 2(a) also demonstrates the fragility of the cat state by showing the effect of an
εb̂

†
1b̂1 term (dashed curve). There is no appreciable effect for U > 0, but for U < 0 the cat

state is destroyed and we get S1 → 0 for U → −∞.
For N > 2 bosons, it is meaningful to study Sn with n > 1. The n-particle reduced Hilbert

space has dimension n + 1; the reduced-space basis states can be labeled by the number of A

bosons in site 1. In the Mott state |N/2, N/2〉, only the diagonal elements of ρn are nonzero
and they are all equal; hence Sn(U → ∞) = ln(n + 1). In the cat state, only two elements are
nonzero, both on the diagonal; hence, Sn(U → −∞) = ln 2, independent of n. Figure 2(b)
demonstrates, via calculation from wavefunctions obtained by numerical diagonalization, that
Sn increases to ln(n + 1) and ln 2 in the U → ±∞ limits. On the negative side, the change
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Figure 2. (a, b) Particle-partitioning entanglement for bosons in the ground state of a two-site
lattice model with on-site repulsion. (a) Two bosons. Solid curve is for the basic Bose–Hubbard
model. Dashed curve illustrates fragility of ‘cat’ state via a εb̂

†
1b̂1 term (ε = 0.1). (b) 1-particle

and 2-particle entanglement entropies for N = 10 (1000) bosons in two sites. Note different units
for positive and negative U. (c) Entropy of spatial entanglement between the two sites (N = 2).

occurs sharply (around U = −2/N); the ground state remains nearly unentangled between
U = 0 and U = −2/N .

Both ρn(U) and Sn(U) can be understood in greater detail using available approximations
for the two-site model [18]; a description is given in [10].

To summarize, in the two-site Bose–Hubbard model the Mott state for U > 0 and
Schrödinger cat state for U < 0 both possess the particle entanglement. This particle
entanglement in the two regimes has different physical origins: the physics of fragmented
condensation for U > 0 and that of Schrödinger cat states for U < 0.

Comparison with spatial entanglement. In figure 2(c) we plot the entropy of entanglement
between the two sites, i.e. the ‘spatial’ entanglement. The spatial entanglement is zero in
the Mott regime of U → +∞, where the wavefunction is a product state in the second-
quantized wavefunction. (Symmetrization plays no role.) In the Schrödinger cat regime of
U → −∞, the spatial entanglement is ln 2 like the particle-partitioning entanglement. In
the Bose condensate regime (small U), the spatial entanglement between sites is large, and
for N = 2 peaks at ln 3 at some small negative U. Thus, particle partitioning and spatial
partitioning lead to very different entanglements, except for the U → −∞ limit.

4.2. Hard-core bosons on one-dimensional lattice

Having considered fragmentation and cat states through the two-site model, we now turn to
imperfect or partial condensation. One way to access such a state is through the model of
hard-core bosons on a 1D lattice (forbidden multiple occupancy, U = ∞) with attractive
nearest-neighbor interaction V:

H = −
∑

i

(
c
†
i ci+1 + c

†
i+1ci

)
+ V

∑
i

nini+1 + U
∑

i

ni(ni − 1),

with U → ∞. We consider N bosons in L sites, subject to periodic boundary conditions. This
is closely related to the spinless fermion model treated later in subsection 5.1.

8
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The point V = −2 has a ‘simple’ ground state known exactly [26]. This wavefunction
is a symmetric equal-amplitude combination of all possible C(L, N) arrangements of bosons.
The exact wavefunction can be exploited to yield [10]

Sn = νn ln N + O(N0),

where ν = N/L is the filling fraction. A natural interpretation is that the pre-factor
represents the un-condensed fraction. Whether this is generic for bosonic systems with
partial condensation remains an open question.

Details for n = 1. The one-particle reduced density matrix is diagonal in the momentum
representation, and has values

〈k|ρ1|k〉 = (N − 1)/[L(L − 1)] for k 	= 0

〈k|ρ1|k〉 = (L − N + 1)/L for k = 0.

In the limit L → ∞ (with fixed filling ν = N/L), the k = 0 eigenvalue becomes
macroscopic at the expense of the others, indicating off-diagonal long-range order [19] and
partial condensation with condensate strength 1 − ν.

Other cases of imperfect condensation. Interacting bosons in three dimensions also have
partial condensation; it would be interesting to calculate Sn for such a model.

4.3. Lieb–Liniger bosons

The generic 1D continuum boson model with repulsive contact interactions (Lieb–Liniger
model [20]) does not possess Bose condensation, and instead the particles fill up individual-
particle levels just as fermions do. (In the Bethe ansatz these levels are labeled by rapidities.)
One can thus expect a leading Sn ∼ n ln N behavior as for fermions. Currently available
evidence strongly suggests this to be the case.

For n = 1, the results of [12] (reviewed in section 6) allow us to infer a leading ln N for
the large-interaction limit, also known as the Tonks–Girardeau limit. In addition, unpublished
numerical results indicate that the behavior S1 ∼ ln N holds for any nonzero interaction [21].

5. Fermionic systems: anti-symmetrization and correlations

Following [10], in 5.1 we use numerical calculations of the spinless fermion chain with nearest-
neighbor interactions (t–V model), one of the basic models of correlated-electron physics, to
illustrate particle entanglement in fermionic systems. Other systems are commented on in 5.2.

5.1. Spinless fermions in one dimension

We consider N spinless fermions on an L-site chain with periodic boundary conditions:

H = −
∑

i

(
c
†
i ci+1 + c

†
i+1ci

)
+ V

∑
i

nini+1.

Through a Jordan–Wigner transformation, this model can be mapped to the anisotropic
Heisenberg (XXZ) spin chain model with anisotropy parameter � = V/2.

For V = 0 (free fermions), the ground state is simple in terms of momentum–space
modes: a Slater determinant of the N fermions occupying the N lowest-energy modes. The
n-particle reduced density matrix has C(N, n) equal eigenvalues, so that Sn = ln [C(N, n)],
independent of the lattice size L.
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Figure 3. n = 1, n = 2 and n = 3 entanglement entropy in half-filled t-V model (N = L/2).
The free-fermion contribution ln [C(N, n)] has been subtracted off. The n = 1 plot also displays
the effect of a symmetry-breaking εc

†
1c1 term, with ε = 0.1. Inset: position of the maximum as

function of ε.

Half-filling. For repulsive interactions at half filling
(
N = 1

2L
)
, this model has a quantum

phase transition at V = 2, from a Luttinger-liquid phase at small V to a charge density wave
(CDW) phase at large V. This mirrors the well-known transition between gapless XY and
gapped Ising phases in the XXZ model at the Heisenberg point � = 1 [22].

For N = 1
2L, the ground state and hence particle entanglement can be simply understood

in the infinite-V limit. The ground state is an equal superposition of two ‘crystal’ states, and
each of them gives a separate contribution to the reduced density matrix. The reduced density
matrix has rank 2C(N, n) and equal eigenvalues: Sn = ln [2C(N, n)]. In the notation of
equation (3), the sub-leading term αn interpolates between αn = 0 at V = 0 and αn → ln 2 at
V → ∞ for half filling. The interpolation details depend on n and N.

Figure 3 shows Sn(V ) for half-filling, calculated from wavefunctions obtained by
direct numerical diagonalization. The Sn(V ) function evolves from SFF = ln [C(N, n)]
to ln [2C(N, n)]  SFF + 0.6931. For n > 1, there is an interesting non-monotonic behavior
in some cases. At present there is no simple picture of the non-monotonic behavior.

We also see Schrödinger cat physics in the t-V model: the V = +∞ ground state is
a superposition of two CDW states of the form |101010 . . . 10〉 and |010101 . . . 01〉. The
fragility of this cat state can be seen by adding a single-site potential, εc

†
1c1, or a staggered

potential, ε′ ∑
i c

†
2ic2i . The ground state then collapses to a single crystal wavefunction, and

Sn drops to ln[C(N, n)] (figure 3, top panel).

Phase transition. The small-n particle entanglement entropies show no strong signature
of the phase transition at V = 2, even after extrapolating to the N → ∞ limit. This
is not too surprising because the notion of space enters rather weakly in the definition of
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Figure 4. (a) Sn for N = 7, L = 12 	= 2N . Horizontal lines are corresponding maximal
bounds ln [C(L, n)]. (b) Negative V, half-filling. Free-fermion contribution ln [C(N, n)] has been
subtracted off in each case.

particle entanglement; thus, Sn is not too sensitive to diverging correlation length or large-
scale fluctuations. It remains unclear whether sharper signatures appear for finite n/N (as
opposed to n � N ).

Away from half-filling. For N 	= L/2, the behavior is qualitatively similar to the half-
filled case, αn increasing from zero to an O(1) value as V increases from zero to infinity
(figure 4(a)). However, there is no simple picture for the V → ∞ limit. Also, αn(V ) appears
to be monotonic, perhaps because αn(V → ∞) is not constrained as in the half-filled (CDW)
case.

Note that, except for Sn=1 in the half-filled case, the particle entanglement never saturates
the upper bound, ln [C(L, n)], dictated by Hilbert space size.

Negative V. An attractive interaction causes the fermions to cluster. In the V → −∞ limit,
the ground state is a superposition (cat state) of L terms, each a cluster of the N fermions. The
cat state can be destroyed as in the positive-V case. For half-filling with even N, the V → −∞
wavefunction yields S1 = ln N + ln 2 (figure 4(b)). There are O(N−1) corrections for odd
N = L/2.

5.2. Other fermionic systems

Other than the 1D spinless fermion model (5.1) and the quantum Hall states (section 7),
we are not aware of further explicit calculations for fermionic many-particle systems. In
[6], calculates particle entanglement of the Hubbard dimer (2-site Hubbard model), and the
current authors have found that preliminary numerics on short Hubbard chains show behaviors
analogous to the spinless-fermion chain.

6. Hard-core anyons in one dimension

In one and two dimensions, quantum indistinguishable particles need not transform under
exchange as fermions or bosons; rather, a continuum of possible intermediate cases connects
the boson and fermion cases. Particles with such intermediate statistics are known as anyons
[23].

11
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A Bethe ansatz solution is available for the anyonic many-particle continuum model with
contact interactions, and has recently received renewed attention [24]. The Hamiltonian is

H = −
N∑
i

∂2

∂x2
i

+ γ
∑
i<j

δ(xi − xj ),

and the anyonic statistics imposes the condition


θ(. . . , xi, xi+1, . . .) = exp[i(θ − π)ε(xi+1 − xi)]

θ(. . . , xi+1, xi, . . .)

on the many-body wavefunction. Here ε(x) = 0 (or 1) if x > 0 (x < 0)and θ is the
anyonic parameter. For θ = 0 or θ = π , this Hamiltonian reduces to free fermions
or Lieb–Liniger Bose gas correspondingly. The choice of periodic boundary conditions

(x1, . . . , xi + L, . . . , xN) = 
(x1, . . . , xi, . . . xN) constrains the anyonic parameter to be an
integer multiple of 2π/(N − 1). Here L is the system size.

The exact solution of the model has been exploited in [12] to calculate the entropy
of particle-partitioning entanglement S1 between n = 1 anyon and the rest, in the limit
γ → ∞. In this limit it is possible to compute the one-particle momentum occupation
numbers, cθ

N(j) = 1/L
∫ L

0 ρ1(x) cos(2πjx/L) dx. This in turn allows one to obtain the
one-particle entanglement entropy:

Sθ
1 (N) = −

∞∑
j=−∞

cθ
N(j) ln cθ

N(j).

Here j indexes the momenta, kj = 2πj/L. For free fermions (θ = 0), there are N equal
non-zero momentum occupation numbers: c0

N(j) = 1/N for −(N − 1)/2 � j � (N − 1)/2.
This gives the expected result Sθ=0

1 (N) = ln N .
For nonzero θ it is not possible to obtain a closed analytic expression for the cθ

N(j). Some
asymptotic relations (j � N ) using the Toeplitz determinant form of the one-particle density
matrix are provided in [12], but this is not enough to extract the entanglement entropy. We will
therefore only review numerical results extracted directly from the exact Toeplitz determinant.
A fit to this numerical data (figure 5(a)) indicates that in the limit N � 1 entanglement entropy
behaves as

Sθ
1 (N)  ln N + f (θ) +

κ(θ)√
N

.

f (θ) is an N-independent function and describes the main dependence of the one-particle
entanglement entropy on the anyonic parameter θ . Figure 5(a) shows some S1 values
calculated numerically, and from this one can extract f (θ) values, plotted in figure 5(b).
The extracted f (θ) values fit extremely well to a sine function. Explaining this regular
behavior of the sub-leading term f (θ) remains an open and important problem.

The fact that entropy scales as ln N with a prefactor 1 is expected at θ = 0 and θ = π

from the arguments involving fermions and condensation-less bosons, discussed in previous
sections. In this sense, the leading ln N behavior for intermediate values of θ is no surprise.
However, from the point of view of the momentum occupation functions cθ

N(j), the prefactor
1 is not evident as the cθ

N(j) functions are quite nontrivial. For bosons (θ = π ), the leading
ln N behavior is reported to persist for finite values of the interaction γ [21]. One might
therefore expect a leading ln N at all θ and all γ > 0, but this has not yet been seen through
explicit calculation.
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Figure 5. (a) One-particle entanglement entropy, Sθ
1 , as function of N, for θ = π (dots fitted by

solid line), θ = π/2 (squares fitted by dashed line) and for θ = π (diamonds fitted by dotted
line). The fits are of form S1 ∼ ln N + f (θ) + κ(θ)/

√
N . (b) The filled dots are f (θ) obtained

numerically. The dashed line is a sine fit.
(Data: courtesy of Raoul Santachiara.)

7. Fractional quantum Hall states

7.1. Preliminaries

The fractional quantum Hall (FQH) states have long fascinated the condensed-matter
community due to their remarkable transport properties and the exotic nature of their
quasiparticle excitations [27–30]. Recently there has been enhanced interest in FQH states with
non-Abelian statistics [28–30] due to the possibility of implementing quantum computation
schemes topologically protected from decoherence [31].

The unusual features of FQH states have been notoriously difficult to characterize using
traditional condensed-matter concepts such as local order parameters and n-point correlation
functions. Therefore, using novel measures of quantum correlations, such as entanglement
entropies inspired by quantum information theory, is an attractive idea for quantum Hall
states. One aspect of fractional quantum Hall states, namely topological order [32], has
been successfully probed using spatial-partitioning entanglement [8, 9, 33–35]. Here, we will
describe particle-partitioning entanglement in FQH states, following mainly [8, 9]. The most
striking result is that particle entanglements are closely approximated by upper bounds whose
expressions reflect the exclusion statistics inherent in FQH states.

We will consider both Abelian and non-Abelian FQH states, &focusing on a paradigmatic
example of each class, namely the Laughlin (L) states [27] and the Moore–Read (MR) (or
pfaffian) states [28, 36, 37]. In planar geometry, the respective wavefunctions are given by


L({zi}) =
∏
i<j

(zi − zj )
m e− ∑

i |zi |2/4


MR({zi}) = Pf

(
1

zi − zj

) ∏
i<j

(zi − zj )
m e− ∑

i |zi |2/4,

with Pf denoting the antisymmetric Pfaffian symbol, and zi = xi + iyi representing the
coordinates of the ith particle. The fermionic Laughlin states (odd m) describe the physics
of the most prominent series of FQH states observed as Hall resistivity plateaus in transport
measurements on two-dimensional electron gases in semiconductor heterostructures. The
Moore–Read state with m = 2 is widely expected to describe the state causing an observed
plateau at a Landau-level filling fraction with even denominator. Since quantum statistics plays
an important role for particle-partitioning entanglement, we also consider bosonic FQH states.
These have not yet been realized experimentally, but have been the focus of experimental
proposals and efforts with laser-cooled trapped bosonic atoms.
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Figure 6. Eigenvalues for the 2-particle reduced density matrix, plotted against their multiplicities,
for one Laughlin and one Moore-Read state.

We will describe FQH states in a spherical geometry [41]. In this representation the
fermions are placed on a sphere containing a magnetic monopole. The magnetic orbitals of
the relevant Landau level are then represented as angular momentum orbitals; the total angular
momentum is half the number of flux quanta, L = 1

2Nφ . The Nφ + 1 orbitals are labeled either
l = 0 to Nφ or Lz = −L to +L. For N particles at fractional filling ν = 1/m, one finds the
interesting FQH states for Nφ = mN − S, where S is a finite-size shift. The Laughlin states
appear at S = m while for the Moore–Read states S = m + 1. The ‘filling’ acquires the usual
meaning ν = N/Nφ only in the thermodynamic limit. The orbitals each are localized around
a ‘circle of latitude’ on the sphere, with the l = 0 orbital localized near one ‘pole.’

7.2. Summary of main results

Appreciating that derivations involving FQH states are not readily accessible to readers
unfamiliar with the quantum Hall literature, we summarize our main results in this subsection.
The technical details are deferred to the remaining subsections.

We consider the entropy of entanglement between nA particles of the state and the
remaining nB = N − nA particles. (In this section, we prefer to display the subscript A

explicitly because there is a profusion of symbols to distinguish from.)
For both Laughlin and Moore–Read series of states, one can consider how the structure

of the FQH wavefunctions reduces the rank of the reduced density matrices ρnA
. Hence, one

can derive upper bounds Sbound
A for the particle-entanglement entropy SnA

[8, 9], which are
reduced compared to the naive bound (SF) obtained from the full reduced Hilbert space. For
FQH states on the sphere, in the simpler cases (nA = 2) the rank reduction has a physical
interpretation in terms of the SU(2) multiplet structure of the spectrum of ρnA

.
For nA � N , these upper bounds in fact happen to be close approximations to the actual

values. This is due to the fact that the nonzero eigenvalues of ρnA
are distributed relatively

flatly (figure 6). (The more flat the eigenvalue distribution is, the closer the entanglement
entropy is to the upper bound lnD dictated by the local Hilbert space dimension D.) This
is in sharp contrast to the exponential-like eigenvalue distributions well-known from spatial
entanglement [9, 38–40].

The upper bounds are logarithms of combinatorial quantities which reflect the exclusion
statistics of quasiparticle excitations in FQH states [25]. In addition, these quantities
distinguish between the physics of the Laughlin and the Moore–Read states—the fact that
the leading correlations have a 2-body nature in the m = 3 Laughlin states and a 3-body nature
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in the m = 2 Moore–Read states is reflected in the 1/N expansions of the approximations
Sbound

A .

7.3. Reduced ranks and entanglement upper bounds: fermionic states

For N fermions, nA particles in the A block, and the total number of orbitals given by
Nφ + 1 = 2L + 1, the obvious upper limit SF

A from Hilbert space counting is

SA � SF
A = ln

(
Nφ + 1

nA

)
. (6)

In the FQH states the correlations are such that the particles avoid each other and the entropy is
further reduced. To obtain a handle on this, one may reason as follows. The model FQH states
in the Laughlin and Moore–Read series can be characterized as zero-energy eigenstates of a
Hamiltonian penalizing pairs and/or triplets of particles coming to the same position. After
tracing out the coordinates for the B set, the dependence on those in the A set is such that one
still has a zero-energy eigenstate. However, the number of orbitals available to the A particles
is larger than what is needed to make the model FQH state in the A sector, and one instead
has a certain number of quasi-holes on top of the A set model state. The total ground state
degeneracy for this situation has been studied in the literature: see [37] for the Laughlin and
Moore–Read states and [42] for the Read–Rezayi [29] and non-Abelian spin singlet (NASS)
[30] series of non-Abelian FQH states.

Laughlin states. The N-particle Laughlin state is realized on a total of Nφ +1 Landau orbitals,
corresponding to Nφ = m(N − 1) flux quanta. The Laughlin state for nA particles would need
NA

φ = m(nA −1) flux quanta; we thus have an excess flux of �Nφ = Nφ −NA
φ = m(N −nA).

This corresponds to the presence of nqh = �Nφ quasi-holes over the ground state. According
to [37] each of the quasi-holes has a number of nA + 1 effective orbitals to choose from, with
bosonic counting rules (meaning that two or more quasi-holes can be in the same effective
orbital). This gives a number of quasi-hole states equal to(

(nA + 1) + nqh − 1
nqh

)
=

(
nA + nqh

nA

)
=

(
Nφ + 1 − (m − 1)(nA − 1)

nA

)
,

leading to the following upper bound to the entropy SA:

Sbound
A = ln

(
Nφ + 1 − (m − 1)(nA − 1)

nA

)
. (7)

We remark that this expression has a clear interpretation in terms of exclusion statistics [25]:
the counting factor in equation (7) gives the number of ways nA particles can be placed in
Nφ + 1 orbitals, in such a way that a particle placed in a given orbital l excludes particles from
orbitals l′ with |l − l′| < m.

Moore–Read. For the fermionic Moore–Read states at ν = 1/m, with m = 2, 4, . . ., we
can reason in a similar way, with now Nφ = m(N − 1) − 1. As for the Laughlin states we
have an excess flux of �Nφ = Nφ − NA

φ = m(N − nA), but now the number of quasi-holes
is twice this number due to the fact that the fundamental quasi-holes correspond to half a
flux quantum. Thus, nqh = 2�Nφ . We now take from [37] the following result for the total
quasi-hole degeneracy:

nA∑
F≡nAmod 2

(
nqh/2

F

)(
(nA − F)/2 + nqh

nqh

)
. (8)

The logarithm of this expression gives us an upper bound Sbound
A as before.
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Expansion in N−1. For the Laughlin states, for nA � N we get from equation (7) for large
N

SF
A − Sbound

A = 1

N

m − 1

m
nA(nA − 1) + O(1/N2).

We compare this to the m = 2 Moore–Read states:

SF
A − Sbound

A = 1

N2

3

4
nA(nA − 1)(nA − 2) + · · · .

The leading deviation from SF
A is a 3-body term at order 1/N2. This result nicely illustrates

the fact that the leading correlations in the m = 2 Moore–Read state have a 3-body character:
the wave-function vanishes if at least three particles come to the same position.

For m 	= 2 the leading correlations do have a 2-body character, as for the Laughlin states:

SF
A − Sbound

A = 1

N

m − 2

m
nA(nA − 1) + · · · .

Other fermionic FQH sequences. The quasi-hole counting rules for the order-k clustered
spin-polarized (Read–Rezayi [29]) and spin-singlet (NASS [30]) states are all known in the
literature [42]. They can be used to generalize the upper bounds on particle-entanglement
entropy given in this subsection to these more intricate non-Abelian FQH states.

Bosonic quantum Hall states. We consider bosonic Laughlin states at filling fraction ν = 1
m

with m = 2, 4, . . . ,. The naive upper bound to the entropy associated with placing nA bosons
in Nφ + 1 orbitals is

SB
A = ln

(
Nφ + nA

nA

)
.

The expression for Sbound
A remains unchanged from the fermionic Laughlin case, giving the

following leading correction in a 1/N expansion:

SB
A − Sbound

A = 1

N
nA(nA − 1) + · · · . (9)

For a bosonic Moore–Read state, with filling fraction ν = 1/m with m = 1, 3, . . ., the
leading 1/N correction becomes

SB
A − Sbound

A = 1

N

m − 1

m
nA(nA − 1) + · · · . (10)

In the case m = 1, the leading correlations have 3-body character, resulting in the vanishing
of the leading 1/N correction. (Similar to the fermionic m = 2 MR states.)

Multiplet picture for rank reduction. For nA = 2, we can get a simple picture of the reduction
of the entanglement entropy (or of the rank of the reduced density matrix) compared to the
naive bound, through consideration of multiplet structures present in the eigenspectrum of
ρnA

. For FQH states on a sphere, the nA-particle reduced density matrices ρnA
commute with

the total angular momentum operators L2
nA

and Lz
nA

of the selected nA particles. As a result,
the eigenvalues of ρnA

are organized in SU(2) multiplet structures: an eigenvalue for total
angular momentum LnA

will be
(
2LnA

+ 1
)
-fold degenerate.

For nA = 2 fermions, each having angular momentum L = 1
2Nφ , the 2-particle states

have total angular momenta L2 = 2L − 1, 2L − 3, . . ., 1 (0), for L integer (half-integer),
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giving a total number of (2L + 1)(2L)/2 states. This corresponds to the naive upper bound to
the entanglement entropy:

SnA=2 � ln [(2L + 1)(2L)/2] = ln

(
Nφ + nA

nA

)
. (11)

Inspecting the explicit structure of the fermionic Laughlin states with m = 3, 5, . . ., one
finds that the eigenvalues corresponding to 2-particle states with L2 = 2L − 1, 2L − 3, . . .,
2L − (m − 2) all vanish. The reason is that the correlations in the Laughlin states are such
that particles cannot come too close together. For example, if a first fermion occupies the
l = 0 orbital, localized near the north pole, the Laughlin wavefunction has zero amplitude for
finding a second fermion in orbitals l = 1, l = 2, . . ., l = m − 1. The highest possible value
of the angular momentum of the two fermions combined is thus L2 = L + (L − m). The
remaining number of non-zero eigenvalues is (2L + (2 − m))(2L + (1 − m))/2, leading to an
improved bound on the entropy SnA=2:

SnA=2 � ln[(2L + (2 − m))(2L + (1 − m))/2], (12)

which is clearly the nA = 2 case of equation (7).
For nA > 2, the multiplet structures are more complicated, and it is difficult to generalize

the above argument, but one expects that the arguments of the previous subsection, relying on
the quasihole degeneracy, are equivalent to the vanishing of one or more eigenvalue multiplets.

7.4. Numerical results

Reduced spectra. In deriving the upper bound Sbound
A we relied on the fact that a certain

number of eigenvalues of the reduced density matrix vanish. The bounds would be exact if all
non-zero eigenvalues were equal, but there is some eigenvalue spread, the bounds overestimate
the actual values for the entropies.

Figure 6 plots the eigenvalues for the nA = 2 reduced density matrix, for N = 9
particles on a sphere in the m = 3 Laughlin state (L = 12). The horizontal axis
represents the degeneracy 2L2 + 1 of the eigenvalues, in descending order. The eigenvalue
at L2 = 2L − 1 = 23, with degeneracy 47, vanishes; the non-zero eigenvalues show some
scatter around an asymptotic value. Due to this scatter the entropy S = 5.509 is somewhat
lower than the upper bound Sbound

A = 5.533.
An important difference between the m = 3 Laughlin and the m = 2 Moore–Read states is

the absence of vanishing eigenvalues for the 2-particle reduced density matrix. The eigenvalue
distribution shown in figure 6 (right) illustrates this point.

In the m = 2 Moore–Read state, there are vanishing eigenvalues in the reduced density
matrix of nA � 3 particles. The number of nonzero eigenvalues predicted by equation (8)
agrees with numerical results. For example, for nA = 3 and N = 10 particles there are
770 nonvanishing eigenvalues, in agreement with equation (8).

While the nonzero eigenvalues are not all equal, their distributions are quite flat, in sharp
contrast to the near-exponential eigenvalue distributions for spatial partitioning.

Entanglement entropy values. In figure 7 we compare numerically computed particle-
entanglement entropies with the bounds described above.

Note that for the m = 2 Moore–Read case, Sbound
A coincides with SF

A for nA = 2 (dashed
and solid lines coincide in the lower-left panel of figure 7), which can be inferred from
equation (8) and is also reflected in the fact that none of the eigenvalue multiplets vanish in
that particular case (figure 6, right panel).
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7.5. Reduced density matrices and correlation functions

Since the nA-particle reduced density matrices ρnA
are obtained by integrating out all but nA of

the particles, one expects these matrices to be related to the nA-particle correlation functions.
For nA = 2, [9] provides a detailed explanation of this relationship, more specific than the
general discussion of subsection 3.5.

In particular, the nA = 2 eigenvalue distributions are indeed very closely related to the
two-particle correlation function g2(r). In fact, the g2(r) curve may be regarded as simply a
continuous form of the λl versus descending-(2l + 1) curves of figure 6. This explains why
the eigenvalue distributions of ρnA=2 in figures 6, although discrete, are reminiscent of the
well-known g2(r) curves for Laughlin and Moore–Read states.

8. Calogero–Sutherland model

The Calogero–Sutherland model holds a special place in condensed matter theory as an
exactly solvable model which possesses fractional excitations [43]. The model has Jastrow-
type ground state wavefunctions similar to FQH wavefunctions; the eigenfunctions are known
in terms of Jack polynomials. Using the properties of Jack polynomials (‘duality relations’),
[11] has studied particle-partitioning entanglement entropies for this model.

The model is described by the Hamiltonian (0 � x � L)

Ĥ = −1

2

N∑
i=1

∂2

∂x2
i

+
∑
i<j

β(β − 1)
(

π
L

)2

sin2
(

π
l
(xi − xj )

) .

By utilizing properties of Jack polynomials in the limit N − n → ∞, [11] provides the
following upper bound on the n-particle entanglement entropy Sn in the N-particle Calogero–
Sutherland ground state:

Sn � Sbound
n = ln

(
β(N − n) + n

n

)
.

In close analogy to the FQH results discussed in section 7, this expression can be interpreted
in terms of exclusion statistics. Tracing out one particle is equivalent to removing one particle
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from Fermi sea, which in turns creates β quasiholes. Thus, taking out N−n particles creates
β(N − n) quasiholes. There are C(β(N − n) + n, n) ways to accommodate n particles and
β(N − n) quasiholes within the Fermi sea, which gives the above estimate.

An explicit expression for the sub-leading correction to this bound is also given in [11]:

SN  ln

(
(β(N − n) + n)!

n!(β(N − n))!

)
− n(ln β − 1 + β−1) + O(N−1).

In this formula the first term originates from the number of nonzero eigenvalues whereas the
second one comes from the asymptotic eigenvalue distribution. An explicit expression for
the O(N0) term is possible because of the more detailed understanding of the eigenvalue
distribution (in terms of the relevant Young tableaus) that is available for this model, as
compared to the FQH case.

9. Conclusions

Particle entanglement is an emerging important measure of correlations in itinerant many-
particle quantum systems. In this review, we have provided an extremely simple and explicit
example (section 2) designed to clarify the concept and remove misconceptions. We have
synthesized the available results into a set of general observations (section 3). We have pointed
out several different mechanisms for particle entanglement in itinerant quantum states, such
as absent or imperfect Bose condensation, anti-symmetrization of fermionic systems and
Schrödinger cat states.

The bulk of this review (section 4 onwards), of course, surveys the available results on
particle entanglement in itinerant many-body systems. The discussion of more conventional
bosonic, fermionic and even anyonic systems, falls mostly within the general observations of
section 3, with more subtle effects (e.g. anyonic statistics) showing up as sub-leading terms.
The study of particle partitioning in quantum Hall states and the Calogero–Sutherland model
provides a window into more exotic phenomena, such as exclusion statistics.

Clearly, the study of particle-partitioning entanglement is at its infancy, and one expects
further insights and new calculations to appear. We hope that this review will provide
inspiration for further advances.
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